
patching music together:
collaborative live coding in pure data

IOhannes m zmölnig
Institute of Electronic Music and Acoustics

University of Music and Dramatic Arts
Graz, Austria

zmoelnig@iem.at

ABSTRACT
Live Coding has established itself as a performane pratie
within the �eld of omputer musi in the last few years. One
of the main motivations for this tehnique has been to pro-
vide a level of orporality of the performane and interation
between performers and auditory, whih are often laking in
traditional omputer musi as opposed to other musi per-
formane tehniques. In this paper we present a Pd-based
environment suitable for Live Coding and disuss its �tness
for interative performane.
Speial fous is given to the diret interation between

multiple performers on- and o�-site that exeeds the tradi-
tional playing-hearing-reating yle.

Keywords
Live-Coding, Collaborative Development, Pure data

1. INTRODUCTION
�Live Coding� is a relatively young performane pratie

that has established itself in the �eld of inter-media art
within the last few years. By the term �Live Coding� we un-
derstand a media performane, where performers reate and
modify their software-based instruments in real time during
the performane, as opposed to traditional omputer musi
performanes, where pre-produed ontent is played bak
(�tape musi�) or the musiians are performing with ready
made software-instruments by starting (or sheduling) and
parameterising unit-generators, e�ets or algorithms.
In Live Coding performanes, the algorithms used to gen-

erate media ontent are thought of and written in real-time
before the audiene, possibly leading to unknown and some-
times unexpeted (even to the performers themselves) re-
sults.
Like in other live musial performanes, it is most fun to

perform not as an individual but as a group.

2. QUESTS IN LIVE-CODING

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Pd Convention 2007. Montréal, Québec, Canada.
Copyright 2007. Copyright remains with the author(s).

2.1 The Quest for Code-Literacy
In order to allow the audiene to follow the on-the-�y evo-

lution of algorithms, a ommon pratie among Live Coders
is the projetion of ode. While this exposes the ode (and
thus the algorithms implemented by this ode), the audiene
is onfronted with another intelletually hallenging layer:
reading and understanding written (and exeuted) software.
While this is probably not a problem for ode-literate people
(e.g. software developers), it is usually less satisfatory for
people who are not used to a ertain language (or who are
not programmers at all).
This is usually ampli�ed by the use of text-based lan-

guages that o�er �elegant� but ondensed solutions that are
hard to grasp if one is not familiar with a ertain idiom.
We believe, that using graphial programming environ-

ments like Pd[10℄, this hallenge an be somewhat faili-
tated. While one an argue that graphial languages tend
to express ontrol strutures in a rather umbersome way
(as ompared to textual languages)[9℄, the simple metaphor
of data-�ow allows people who are not familiar with the
language to at least get an overall idea what might be go-
ing on. After all, programming in data-�ow languages like
Pd has been diretly derived from real pathing (wiring) of
eletroni modular instruments.
For those who do not want to read the path as algorithms

at all, graphial languages an at least o�er eye-pleasing, less
tehnoid visuals.

2.2 The Quest for Collaboration
Like other ollaborative improvisations, Live Coders an

implement a 3-phase way of playing together: After a phase
of playing (aka: oding), one enters a phase of listening to
the ombined result whih leads to re�etion on the outome
and provokes further steps.
A more elaborate way of playing together an be ahieved

by sharing data, e.g. by diretly using the signal output of
a o-player, or by sharing ontrol data via a network.
Nevertheless all these tehniques are super�ial, as they

only allow the players to interat on the level of symptoms
of the used algorithms, rather than on the algorithmi level.
In order to overome this limitation, one has to share the

algorithms between multiple players: in the ase of Live
Coding this is equivalent to sharing the ode in real time.
One solution for this task has been implemented in the

Just-In-Time Library (JITlib)[11℄ for SuperCollider[5℄, where
one player writes a snippet of ode, whih is then trans-
mitted to the o-players, who an then modify the snippet
and re-ommit it[3℄. While this allows for interation on

the algorithmi level, the evolution is again restrited to a
ode-ommit-reode yle, sine only valid (this is: synta-
tially orret) snippets an be ommitted and the hanges
to the ode stay invisible to the rest of the ensemble until
one hooses to publish them.
In order to address this, we propose a way of interating

on an even lower level: people should be able to write ode
together in parallel instead of only reshaping ode sequen-
tially.
A distributed ollaborative editor allows pathing both

independently and in lose ollaboration, where every par-
tiipant has full ontrol over the entire path.
In text-based environments this problem has been tak-

led in the last years[2℄, resulting in both ommerial (like
SubEthaEdit[6℄) for the Ma OS-X platform) and FLOSS
solutions (e.g. the ross-platform editor Gobby[1℄).
However, all of these require dediated server and lient

software, the latter usually being text editors (only), whih
makes it neessary to heavily tweak them, before being able
to use them for ollaborative pathing with Pd.
The rest of the paper will disuss possible ways to allow

multiple users edit a Pd path ollaboratively.

3. FIRST STEPS
In the performane series Blind Date[7℄, several people

are reating a path produing an audio-visual onert from
srath: A small group of performers (at least two, but
usually no more than that) is working simultaneously on
one path, sharing their ideas but also interfering with eah
other, e.g. by hindering their partners to reate a ertain
objet.
The �rst attempt to ful�ll this requirement was rather

simple: several mie and keyboards were attahed to the
omputer that runs the path (�gure 1).

hello world

print

0

message atom

object

���
���
���
���

��
��
��
��

hello world

print

0

message atom

object

Figure 1: A simplisti ollaborative pathing en-
vironment, using USB-keyboards, USB-mie and a
VGA-splitter

While this is solution is very simple to ahieve, it has some
obvious drawbaks:

• salability: while onneting a number of input devies
via USB is simple, distributing the video-output to
several monitors quikly beomes umbersome, as few
mahines have more than 2 VGA-outputs and VGA-
splitters are expensive.

• loality: using USB- and VGA-onnetions the parti-
ipants an only be so far from the host omputer.

• fous: sharing keyboard and mouse has the strong dis-
advantage of having a shared fous. Therefore if one

person is working on one part of the path, all other
people are fored to work on the very same part too.

4. ARCHITECTURE
Pd has a networked arhiteture, that separates the
DSP-engine (the pd proess) from the user-interfae
(the pd-gui proess). These two omponents ommu-
niate via a TCP/IP-onnetion.
When Pd is normally started, the DSP-engines starts
up, opens a port (per default: 5600), and then starts
a seond proess, the pd-gui whih onnets bak to
the engine (see �gure 2).

pd gui

pd dsp
port:5600

Figure 2: Pd as it usually operates: the pd-gui pro-
ess onnets to the engine (pd dsp) on (e.g.) port
5600.

A naive approah to �x some of the above mentioned
problems, is by introduing a proxy-server that sits
in-between these two omponents. The only thing this
proxy has to do, is to pass on all information it reeives
from the pd-gui to the engine and vie versa.

pd gui

pd proxy

pd gui

pd dsp

port:5500

port:5600 port:5600

Figure 3: Several pd-guis onneting to a proxy
whih forwards the data to the engine. Data om-
ing from the engine, is broadast to all onneted
pd-guis

This an be extended to use several lients, e.g. pd-guis:
all data from the pd-guis is sent �anonymously� to
the engine (whih does not know nor are whih GUI
it is reeiving from). The engine does the interpre-
tation of the data (e.g. reate an objet [foo℄ from
the text �foo�) and sends the display instrutions (in
theory �display an objet alled 'foo' with 1 inlet�, but
in reality rather �display the name 'foo' and draw 4
lines around itand then make a blak area at position
x/y�) bak to the proxy, whih then distributes it to
the pd-guis, updating all of them synhronously (see
�gure 3).

4.1 A simple proxy written in Pd
The good news about this approah is, that it does not
need any speial modi�ations to the Pd exeutables.

Both the Pd engine and the pd-gui an at as a server
(opening a port on whih they listen for inoming on-
netions) and as a lient (onneting to a port on a
server), depending on their startup arguments.
Making the proxy a server for both engine- and GUI-
lients allows (in theory) to onnet multiple GUIs and
engines together.
In a �rst proof of onept we just onentrate on on-
neting multiple GUIs to a single engine.
While the implementation of the proxy ould be done
in any environment, we hose to do a �rst realisation
within Pd itself (see �gure 4).
For the simplest ase of a proxy that only relays the
data between the engine and one or several GUI's, it
is su�ient to use two servers (e.g. Martin Peah's
[tpserver℄ objet[8℄) and onnet them to eah other,
sending all data that are reeived by one server to all
lients onneted to the other server and vie versa.
In order to allow GUIs to onnet at a later time and
still beome synhed with the rest of the path, we use
a bu�er that stores all messages sent from the engine
to the GUIs. Whenever a new GUI onnets to the
proxy, it is �rst updated with the entire history. Then
it is synhronised with the rest and an start to at as
a new repliated interfae.

4.2 A more sophisticated proxy
A merely repliating proxy has several aveats. For
instane, every user an modify the global state of
the server, whih an be problemati, when one of
the users inidentally Quits �their� instane, whih in
fat quits the engine and furthermore all GUIs from
the other users. This an be helped by adding �lter-
ing rules, that might modify or suppress ertain mes-
sages (e.g. by not allowing the GUIs to send the ;pd
quit message to the engine, one an protet the engine
against being shut down by one of the users).
It would also be possible to olourise parts of the path
based on the users who ontributed to that part.
A proxy ould also generate instrutions on its own.
For instane, it has proven problemati, that the par-
tiipants are not able to see the mouse pointers of their
partners.1 A solution to this an be a proxy, that while
passing on the mouse-movement to the engine also tells
the onneted GUIs to draw a mouse representation
on their window(s), thus giving all partiipants visual
feedbak about all mouse pointers.

5. EXPERIENCE
Honestly, we haven't yet used the proposed solution
in a �real world� environment. The Blind Date in-
stane at the pd-onvention07 will hopefully be our
�rst publi performane with this networked ollabo-
rative pathing environment.

1The pd-gui gets the mouse position and forwards it to the
engine, but it does not draw the mouse pointer. Instead, the
mouse pointer is displayed by the X-server (or a orrespond-
ing servie, depending on your platform). Sine the X-server
is loal to the mahine running the pd-gui, the performers
have no visual feedbak on what the other partiipants are
urrently doing with their mouse. This problem does not
our with keyboard interation, sine the haraters are
diretly drawn by the pd-gui.

6. DISCUSSION

6.1 Similar environments for Pd

6.1.1 serendiPd
The proposed way of ollaborative pathing is very
similar to that of Hans-Christoph Steiner's serendiPd[12℄
The main di�erene is, that serendiPd requires the
lients to run a speial path for onnetivity to the
server, whereas here the lients do not even run a
full-�edged Pd but only the GUI proess. However,
this also means, that the lient does not produe any
audio- or video- output on its own, whih might be
non-satisfatory in disloated performanes. In fu-
ture versions the proxy might also support onneting
multiple DSP-engines whih might solve this, as eah
�node� would then run a synhed version of both the
engine and the GUI.

6.1.2 netpd
While Roman Häfeli's netpd[4℄ o�ers high level inter-
ation, the here proposed solution is on a very low
level. netpd onentrates on reating musi with shared
programs (by uploading pre-made abstrations and al-
low all users to ontrol these abstrations in a ol-
laborative manner), whereas we rather onentrate on
reating programs/pathes together. The ease and
smoothness of netpd omes at the ost of obeying a
strit set of rules, in order to make pathes �netpd-
aware�. On the other hand, the proxy solution o�ers
nothing but onneting.

6.2 Longing for a better separation
While Pd's separation between its engine and the user
interfae makes the proxy approah possible, one has
to admit that things are not totally optimal. In the
urrent implementation the GUI does hardly more than
tell the engine what is happening at the input devies
(keyboard, mouse) and in turn draws retangles and
haraters as told by the engine. This leads to onur-
reny problems when several GUIs are ommuniating
with one engine at the same time. For instane, if two
users want to modify two sliders with their mie at the
same time, the engine gets onfused as it seems like one
mouse pointer is jumping fast between the two sliders.
If the GUI was able to evaluate the mouse movement
by itself, it would be su�ient to tell the engine that
the value of slider x has hanged to y. This would
eliminate the ambiguity of the two mouse movements,
while at the same time reduing the total network traf-
� (and therefore the workload of the proxy).

7. CONCLUSIONS
In this paper we introdued a Pd-based environment
for ollaborative Live Coding, that allows interation
of several networked performers on a low level. Be-
ause no hanges to neither Pd-engine nor pd-gui are
required, the proposed proxy approah does not rely
on any spei� version of Pd or externals for both user
interfae and DSP. An implementation of this proxy
done within Pd has been presented.2

2Note that unlike the engine and the GUI, the proxy imple-

8. ACKNOWLEDGEMENTS
Big hugs to the pd-graz olletive for their general sup-
port and their Blind Date performane, that inspired
this paper.

9. REFERENCES
[1℄ A. Burgmeier and P. Kern. Gobby - a

ollaborative text editor, 2005-. Available from
World Wide Web: http://gobby.0x539.de/
[ited 2007/07/18℄.

[2℄ C. Cook. Towards Computer-Supported
Collaborative Software Engineering. PhD thesis,
University of Canterbury, Canterbury, New
Zealand, 2006.

[3℄ A. de Campo, A. Vaa, H. Hölzl, E. Ho,
J. Rohrhuber, and R. Wieser. Code as
performane interfae - a ase study. In Pro. of
NIME, New York, to be published.

[4℄ R. Häfeli. netpd, 2007. Available from World
Wide Web: http://www.netpd.org/ [ited
2007/07/20℄.

[5℄ J. MCartney. Rethinking the omputer musi
language: Superollider. Computer Musi
Journal, 26(4):61�68, 2002.

[6℄ M. Ott, M. Pittenauer, and D. Wagner.
Subethaedit, 2005-. Available from World Wide
Web: http://www.odingmonkeys.de/
subethaedit/ollaborate.html [ited
2007/07/18℄.

[7℄ pd graz. blind date. performane series, 2005.

[8℄ M. Peah. net library for pd, 2006. Available
from World Wide Web:
http://pure-data.vs.soureforge.net/
pure-data/externals/mrpeah/net/ [ited
2007/07/20℄.

[9℄ M. Petre. Why looking isn't always seeing:
Readership skills and graphial programming.
Communiations of the ACM, 38(6):33�44, 1995.

[10℄ M. S. Pukette. Pure data. In Proeedings of the
International Computer Musi Conferene, pages
224�227. International Computer Musi
Assoiation, 1997.

[11℄ J. Rohrhuber and A. de Campo. Unertainty
and waiting in omputer musi networks. In
Proeedings of the International Computer Musi
Conferene, 2004.

[12℄ H.-C. Steiner. serendipd - impromptu networked
ollaboration, 2004. Available from World Wide
Web: http://at.or.at/serendipd/ [ited
2007/07/20℄.

mentation relies on a proper Pd version and ertain externals
installed.

DSP GUI

buffer

new_connection

list trim

list prepend broadcast

list trim

list prepend broadcast

list trim

list prepend send

1

spigot

0

t f b

f

t b b

del 0

t a <data to all DSP clients>

<data from DSP clients>

t a <data to all GUI clients>

t a <data to single GUI client>

<data from GUI>

t a

<socket of newly connected GUI>
list prepend 0

t f f

t a a
t a

> 0

select 1

fifop

dump

stores all messages from
the engine: whenever a

a new GUI connects, it

will be updated to the

current status.

tcpserver 5500 tcpserver 5600

Figure 4: A very simple repliating proxy

